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Abstract
We consider scalar field theory in the D-dimensional space with nontrivial
metric and local action functional of the most general form. For this model it is
possible to construct a generalization of the renormalization procedure and the
RG-equations. In the fixed point the diffeomorphism and Weyl transformations
generate an infinite algebraic structure of D-dimensional conformal field theory
models. The Wilson expansion and crossing symmetry enable us to obtain sum
rules for dimensions of composite operators and Wilson coefficients.

PACS numbers: 11.10.−z, 11.10.Gh, 11.10.Hi, 11.10.Kk, 11.25.Hf, 11.55.Hx

1. Introduction

Essential achievements in the study of quantum field theoretical models were obtained on the
basis of the analysis of their symmetry properties and algebraic structures. The higher the
symmetry, the stronger are the restrictions put on the possible form of correlation functions.
It is known that the conformal invariance defines two-point correlation functions up to a
constant amplitude and three-point correlation functions as finite linear combinations with
constant coefficients of known functions (Polyakov triangles) [1–3]. For the two-dimensional
conformal field theory its most fundamental features are described by the Virasoro algebra
[4, 5]. A possible extension of these algebraic methods on conformal field theory (QFT) in
D dimensions was suggested for arbitrary D in [6]. There it was proposed to use the algebra
of the general coordinate transformation as an analogue of the Virasoro algebra for the D-
dimensional case. In [6] the Green functions for operators φ2, φ4 were studied in the φ4 theory.
For a generalized diffeomorphism composed of diffeomorphism and Weyl transformation the
Ward identities for these Green functions were obtained. These are similar to those used in
the two-dimensional QFT. In this paper we generalize the results of [6] for all the composite
operators of the scalar Euclidean D-dimensional QFT and construct the infinite algebraic
structure analogous to that presented by the Virasoro algebra in two dimensions.

The popular belief [5] that for integer D > 2 the symmetry of QFT is finite (because
conformal transformation is completely specified by (D + 1)(D + 2)/2 parameters) appears
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to be erroneous. For arbitrary D similar to the two-dimensional case, the global conformal
transformations form a subgroup of an infinite-dimensional group of the QFT symmetry. In
order to describe this symmetry we analyse the diffeomorphism and Weyl transformation of D-
dimensional field theory in curved space and the most essential features of its renormalization
procedure [7]. It enables us to reveal an infinite algebraic structure in the D-dimensional
Euclidean QFT and to obtain its basic relations.

If the normalization factors of field operators are fixed, the correlation function in the QFT
is defined by anomalous dimensions of fields and coefficients of the Wilson expansion [3, 5],
and from this point of view exact analytical relations connecting these characteristics seem to
be especially important. In this paper we construct the sum rules of such a kind for dimensions
of fields and the Wilson coefficients for the Euclidean scalar QFT in an arbitrary dimension
D. They follow from the Wilson operator product expansion and crossing symmetry for the
four-point correlation function [8].

The paper is organized as follows. For eliciting an inherent algebraic structure of the
Euclidean field theory we consider in a D-dimensional curved space an auxiliary model (AM)
of scalar field theory with the action of the most general form. The general coordinate
transformations and the local scale transformations of AM are studied in sections 2 and 3. In
section 4 the infinite symmetry of the Euclidean D-dimensional renormalized field theory is
determined from the symmetry of the renormalized AM. In section 5 the symmetry properties
of the D-dimensional Euclidean QFT are investigated. The specific features of the Wilson
operator product expansion and crossing symmetry in the QFT are considered in sections 5
and 6. The most important points of derivation of sum rules for anomalous dimensions
and Wilson coefficients are presented in section 7, and technical details are described in the
appendix. The results are discussed in section 8.

2. Diffeomorphism transformations

For a curved D-dimensional space with metric γµν the general coordinate (diffeomorphism)
transformations are defined in the following way. The infinitesimal reparametrization of the
coordinates x is written as δDT

α xµ = αµ(x), where αµ(x) are the parameters of transformation.
The commutation relation for diffeomorphism transformations (DT) is of the form[

δDT
α , δDT

β

] = δDT
[α,β], (1)

where [α, β] = (α∇)β − (β∇)α is the commutator of vector fields (∇λ denotes the covariant
derivative, ∇λγµν = 0). For tensor fields,

δDT
α F (x) = LαF(x). (2)

Here Lα denotes the Lie derivative defined by the vector field αµ(x):

LαFµ1,...,µm

ν1,...,νn
(x) = (α∇)Fµ1,...,µm

ν1,...νn
+

n∑
i=1

∇νi
αλi F (x)

µ1,...,µm

ν1,...,λi ,...,νn
−

m∑
i=1

∇λi
αµi F (x)µ1,...,λi ,...,µm

ν1,...,νn
.

In particular, for the scalar field φ and the metric γµν(x) we have

δDT
α φ(x) = (α∇)φ(x), δDT

α γµν = ∇µαν + ∇ναµ. (3)

Let us introduce the notation

ωµν
α (γ ) ≡ ∇µαν + ∇ναµ − 2

D
(∇α)γ µν.

When ωµν
α = 0, α(x) �= 0, the vector α(x) and the corresponding transformation δconf

α ≡ δDT
α

will be called conformal. It is well known that in the flat space δconf
α x is the conformal
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transformation (CT) of the coordinates x. The commutator [α, β] of conformal vectors α, β

is conformal. Therefore, it follows from (1) that the CTs (if they exist for the given metric
γ (x)) form a subgroup of the DT group. This subgroup will be called conformal.

Let 	(x)µ1,...,µn
denote the covariant tensor obtained by products of covariant derivatives

of the field φ and the curvature tensors with possible contractions of a part of indices. The
set {Φ} of all such tensors can be used as the basis for constructing diffeomorphism invariant
local functionals of the field φ. Thus the most general form of the diffeomorphism invariant
local action of the field φ in the curved D-dimensional space can be written as follows [9, 10]:

S(A, γ, φ) =
∫

dx
√

γL(φ(x),A(x)),

where γ ≡ det γµν, L(φ(x),A(x)) is the Lagrangian:

L(φ(x),A(x), γ (x)) =
∑

	i∈{Φ}
Ai(x)	i(x),

and Ai(x) denotes the contravariant tensor source corresponding to the covariant tensor field
	i(x). In the Lagrangian the indices of sources and the fields are contracted.

The generating functional for the connected Green functions of the Euclidean quantum
field theory with action S has the form

W(A, γ ) = ln
∫

exp{−S(φ,A)}Dφ.

The metric γµν(x) can be considered as the source for the energy–momentum tensor.
Taking into account the diffeomorphism invariance of the action S(φ,A) and using the

Schwinger equations for W it is easy to show that the functional W(A, γ ) is invariant with
respect to the DTs:

δDT
α W(A, γ ) = DDT

α W(A, γ ) = 0. (4)

We have used the notation

DDT
α (A, γ ) ≡ δDT

α γµν

δ

δγµν

+
∑

i

δDT
α Ai δ

δAi
,

where δDT
α γµν, δ

DT
α Ai are defined by (2), (3). Obviously, the operators DDT

α (A, γ ) form a
representation of the diffeomorphism algebra:[

DDT
α (A, γ ),DDT

β (A, γ )
] = DDT

[α,β](A, γ ).

3. Weyl transformations

We consider now the group of the Weyl transformations (WT). For the metric γµν , the
infinitesimal WT is defined as the local rescaling

δW
σ γµν(x) = −2σ(x)γµν(x) (5)

specified by the scalar function σ(x).
These transformations form the commutative algebra[

δW
σ , δW

ρ

] = 0. (6)

For the field φ we define the WT in the following way:

δW
σ φ(x) = σ(x)dφφ(x), (7)
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where dφ = (D − 2)/2 is the canonical dimension of the field φ. Definitions (5), (7) make it
possible to define the WT for the set of fields 	:

δW
σ 	(x) ≡

(
δW
σ γµν

δ

δγµν

+ δW
σ φ

δ

δφ

)
	(x).

This transformation can be written in the form

δW
σ 	i(x) =

∑
j

M
j

i (σ )	j (x),

with the matrix M
j

i (σ ) = M
j

i (σ, γ ) satisfying the relation

δW
σ γµν

δ

δγµν

M(ρ) − δW
ρ γµν

δ

δγµν

M(σ) + [M(σ),M(ρ)] = 0. (8)

Let us define the operator

DW
σ (A, γ, φ) ≡ δW

σ γµν

δ

δγµν

+ δW
σ φ

δ

δφ
+

∑
i

δW
σ Ai δ

δAi
,

where

δW
σ Ai ≡

∑
j

(
σDδi

j − Mi
j (σ )

)
Aj . (9)

It can be considered as a general form of the infinitesimal WT suitable for all fields and sources
because from (8), (9) it follows that[

DW
σ (A, γ, φ),DW

ρ (A, γ, φ)
] = 0.

For the WT defined in this way one can easily prove that the action S is invariant:

DW
σ (A, γ, φ)S(A, γ, φ) = 0. (10)

Similar to the case of the DTs, it follows from (10) that the functional W is invariant with
respect to the WTs:

DW
σ (A, γ )W = 0, (11)

where

DW
σ (A, γ ) ≡ DW

σ (A, γ, 0) = δW
σ γµν

δ

δγµν

+
∑

i

δW
σ Ai δ

δAi
. (12)

The operators DW
σ (A, γ ) form a representation of the WT algebra:[
DW

σ (A, γ ),DW
ρ (A, γ )

] = 0.

For a constant σ ,

δW
σ 	i = diσ	i, Mi

j (σ ) = δi
j σdj , δW

σ Ai = d̄ iσAi,

where the constant parameters di = di(D), d̄i ≡ D − di = d̄ i (D) are the dimensions of the
field 	i and the source Ai . For the field 	0 ≡ ∇µφ∇µφ we have d0 = D, and d̄0 = 0 for the
corresponding source A0. If the source Ai is dimensionless, i.e. d̄ i (D) = 0 for some definite
value D = Di of the space dimension, the dimension Di is called logarithmic for Ai . For a
given D we denote the dimensions of fields and sources as d

log
j = dj |D=D, d̄

log
j = d̄j |D=D.
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4. Renormalization

To perform the renormalization procedure we choose the source A that defines the logarithmic
dimension D which is considered as a fixed parameter specifying the renormalized theory.
The generating functional Wr for renormalized Green functions is defined as follows:

Wr(J, γ ) ≡ W(A(J, γ ), γ ).

The functions A(J, γ ) on the right-hand side are of the form

Ai = µ�i F i(J, γ,D). (13)

Here µ is an auxiliary scaling parameter,

�i = �i(D) = d̄ i (D) − d̄ i
log

,
∂F i(J, γ,D)

∂J i

∣∣∣∣
J=0

= 1.

The function F(J, γ,D) obeys the homogeneity condition

Dlog(J, γ )F i(J, γ,D) = d̄
log
i F i(J, γ,D), (14)

where

Dlog(J, γ ) ≡
∑

i

d̄
log
i J i δ

δJ i
− 2γµν

δ

δγµν

. (15)

It is also supposed that the functions J (A, γ ) defined by (13) are the tensors with respect to
DTs:

δDT
α J i = LαJ i. (16)

The operators DDT
α (A, γ ), DW

σ (A, γ ) can be presented in terms of the variables of Wr . It
follows from (12), (16) that

DDT
α (A, γ ) ≡ DDT

α (J, γ ) = DDT
α (J, γ ), (17)

DW
σ (A, γ ) ≡ DW

σ (J, γ ) = δW
σ γµν

δ

δγµν

+
∑

i

δW
σ J i δ

δJ i
. (18)

The WT for the sources J can be obtained from (9), (12), (13):

δW
σ J i =

∑
j

T i
j

{∑
k

[
σDδ

j

k − M
j

k (σ )
]
Fk − 2σγµν

δ

δγµν

F j

}
.

Here T i
j is the element of the matrix T defined as follows:

∑
j

T i
j

∂F j

∂J k
= δi

k.

Since the commutation relations do not depend on the choice of variables,

[
DDT

α (J, γ ),DDT
β (J, γ )

] = DDT
[α,β](J, γ ), (19)[

DW
σ (J, γ ),DW

ρ (J, γ )
] = 0. (20)
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In virtue of (13), (14), (15) we have Dlog(J, γ ) = Dlog(A, γ ). Hence, for σ being constant
we obtain the relations

DW
σ (A, γ ) = σDlog(A, γ ) + σ

∑
i

�iAi

δ

δAi

= σDlog(J, γ ) + σ
∑

i

µ
∂Ai

∂µ

∣∣∣∣
J=const

δ

δAi

= σDlog(J, γ ) + σµ
∂

∂µ

∣∣∣∣
J=const

− σµ
∂

∂µ

∣∣∣∣
A=const

,

and

δW
σ J i = DW

σ (A, γ )J i = σ

(
d̄

log
i J i − µ

∂J i

∂µ

∣∣∣∣
A=const

)
. (21)

It follows from (4), (11) that Wr(J, γ ) is invariant with respect to the diffeomorphism and
Weyl transformations:

DDT
α (J, γ )Wr(J, γ ) = 0, (22)

DW
σ (J, γ )Wr(J, γ ) = 0. (23)

For usual models of the quantum field theory the functional Wr(λr, Jr , Jγ ) in the Euclidean
D-dimensional space can be constructed from Wr(J, γ ) in the following way:

Wr(λr, Jr , Jγ ) = Wr(λr + Jr, γ
E + Jγ ).

Here λr, Jr denote the set of renormalized parameters and the set of the sources of renormalized
composite operators, respectively. The source of the energy–momentum tensor and the metric
of the D-dimensional Euclidean space are denoted by Jγ and γ E , respectively. If nonzero
λi �= 0 occur only when d̄

log
i � 0, then the model is renormalizable. In this case by

choosing the appropriate functions F i in (13) the functional Wr(λr, Jr , Jγ ) and the operators
DDT

α (λr + Jr, γ
E + Jγ ), DW

σ (λr + Jr, γ
E + Jγ ) are finite for D = D, finite parameters λr

and sources Jr, Jγ [9–11]. For Wr(λr, Jr , Jγ ) equation (23) with a constant σ appears to
be the usual renormalization group equation (if one takes into account (21) and (22) with
α(x) = xσ ).

5. Critical point

Combining the DT and the WT one can obtain the transformation

δα = δDT
α + δW

σ

∣∣
σ= ∇α

D

.

From the commutation relations (1), (6), it follows that

[δα, δβ] = δ[α,β].

This means that the transformations δα form the representation of the diffeomorphism algebra.
In virtue of (3), (5) we have

δαγ µν = −ωµν
α .

Hence, δαγ µν = 0 for conformal α. Let us introduce the operators

Dα(J, γ ) ≡ DDT
α (J, γ ) + DW

σ (J, γ )
∣∣
σ= ∇α

D

,

Dr
α(λr , Jr , Jγ ) ≡ Dα(λr + Jr, γ

E + Jγ ).
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It follows from (19), (20) that[
Dr

α(λr , Jr , Jγ ),Dr
β(λr , Jr , Jγ )

] = Dr
[α,β](λr , Jr , Jγ ),

i.e. the operators Dr
α form the representation of the diffeomorphism algebra. In virtue of the

diffeomorphism and Weyl invariance of Wr ,

Dr
α(λr , Jr , Jγ )Wr(λr, Jr , Jγ ) = 0. (24)

If

Dr
α(λ∗, 0, 0) = −ωµν

α (γ E)
δ

δγ µν

for the parameters λr = λ∗ of the renormalized Euclidean theory, we call this set of parameters
the critical point. It can be proven that this equality is equivalent to relations defining the fixed
point [11] in the renormalization group theory.

For conformal α let us denote Dconf
α (Jr , Jγ ) ≡ Dr

α(λ∗, Jr , Jγ ). For the flat space, it
follows from (24) that

Dconf
α (Jr , Jγ )Wr(λ

∗, Jr , Jγ ) = 0. (25)

In virtue of Dconf
α (0, 0) = 0, equality (25) means the usual conformal invariance of the

Euclidean quantum field theory at the critical point.

6. Wilson expansion

The obtained infinite number of Ward identities present the algebraic structure of QFT in
terms of linear differential equations for Wr in first-order variation derivatives. The well-
known Wilson asymptotic expansion is written as a differential relation including variation
derivatives of second order:

δ

δJ i(x)

δ

δJ k(y)
Wr =

∑
l

∫
dz Kijl(x, y, z)

δ

δJ l(z)
Wr. (26)

It can be considered as a completing condition for the considered algebraic structure. In the
QFT the Wilson-expansion series are convergent [12]; the functions Kijl(x, y, z) being three-
point correlation functions are defined exactly up to the finite number of constant (Wilson
coefficients) by dimensions of field operators. In this paper we study restrictions following
from (26) for dimensions of fields and Wilson coefficients. For this purpose we introduce
some definitions and notations.

Let x(n) be a symmetric traceless tensor of rank n constructed from components
xa, a = 1, . . . , d, of the D-dimensional vector x and Kronecker symbols:

x(n)
a1···an

= xa1 · · · xan
− traces.

By definition, the contraction of x(n) with y(n) is written as

x(n)y(n) =
{ n

2 }∑
k=0

d
(n)
k x2ky2k(xy)n−2k ≡ F (n)(x2y2, xy),

where {n/2} denotes the integer part of n/2, and d
(n)
0 ≡ 1. With fixing F (n)(0, b) = bn and

condition ∂2
xF (n)(x2y2, xy) = 0 the function F (n)(a, b) is defined unambiguously:

F (n)(a, b) = bn

{ n
2 }∑

k=0

d
(n)
k

( a

b2

)k

, d
(n)
k = (−1)kn!�(ξ + n − k − 1)

4kk!(n − 2k)!�(ξ + n − 1)
.
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We shall use the following notation:

L(α; x) ≡ 1

(x2)α
, L(n)(α; x) ≡ x(n)L(α + n; x)

λa(x; y, z) ≡ (x − y)a

(x − y)2
− (x − z)a

(x − z)2
,

V (α1, α2, α3; x1, x2, x3) = L(�12; x1 − x2)L(�13; x1 − x3)L(�23; x2 − x3)

= (x1 − x2)
−2�12(x1 − x3)

−2�13(x2 − x3)
−2�23

V (n)(α, β, γ ; x, y, z) = V (α, β, γ ; x, y, z)λ(n)(x; y, z),

where x, y, z, x1, x2, x3 are the vectors of the D-dimensional space, and

�12 = α1 + α2 − α3

2
, �13 = α1 + α3 − α2

2
, �23 = α2 + α3 − α1

2
.

The Wilson expansion for the four-point correlation function W(x, y, s, t) of the scalar
field 	α with the dimension α reads [3, 12]

W(x, y, s, t) =
∑
n,l

fln

∫
V (l)(βln, α, α; z, x, y)V (l)(β̃ln, α, α; z, s, t) dz. (27)

Here, fln are the Wilson coefficients, V (l)(z, x, y;βln, α, α) is (up to a constant amplitude) the
three-point correlation function of two fields 	α and one symmetric traceless one-component
tensor field with the dimension dn, and β̃ln denotes the ‘shadow’ with respect to the dnl

dimension:

β̃ln ≡ 2ξ − βln − 2l.

In virtue of V (l)(z, x, y;βln, α, α) = (−1)lV (l)(z, x, y;βln, α, α) and symmetry
W(x, y, s, t) = W(y, x, s, t) = W(x, s, y, t) we conclude that in (27) the summation
parameter l is even, and the crossing symmetry equation∑
n,l

fln

∫
V (l)(βln, α, α; z, x, y)V (l)(β̃ln, α, α; z, s, t) dz

=
∑
n,l

fln

∫
V (l)(βln, α, α; z, x, s)V (l)(β̃ln, α, α; z, y, t) dz (28)

must be fulfilled. It is a nontrivial restriction on the possible values of the Wilson coefficients
and dimensions of fields. We show how one can be expressed in the form of exact analytical
relations not containing coordinates x, y, s, t, z.

7. Crossing symmetry and sum rules

It will be convenient for compact writing of formulae to use the notation ξ for the half
dimension of space D and a short notation for the product of �-functions:

ξ ≡ D

2
, �(a, b, . . . , c) ≡ �(a)�(b) · · · �(c).

If our expressions contain the letter with prime, it will have the following meaning:

α′ ≡ ξ − α.

Equality (28) is exact, but it is an integral equation with infinite number of terms, and a direct
analysis of them is not easy. We obtain an evident form for the following consequence of the



Renormalization group and infinite algebraic structure 8165

crossing symmetry equation:∑
n,l

fln

∫
(s − t)(m)V (l)(βln, α, α; z, x, y)V (l)(β̃ln, α, α; z, s, t)

(s − t)2(γ +m)
dx ds dz

=
∑
n,l

fln

∫
(s − t)(m)V (l)(βln, α, α; z, x, s)V (l)(β̃ln, α, α; z, y, t)

(s − t)2(γ +m)
dx ds dz.

(29)

It is important that (29) must be fulfilled for arbitrary γ and all integer m.
The first step of the calculation is a direct integration over x. In the appendix it is shown

that with help of the formula∫
L(n)(α; x − z)L(β; z − y) dz = πξ �(α′, β ′, ξ − α′ − β ′ + n)

�(α + n, β, 2ξ − α − β)
L(n)(α + β − ξ ; x − y),

(30)

one can integrate V (l)(z, x, y;βln, α, α) over x. After that the crossing symmetry equation
takes the form∑
n,l

f ′
ln

∫
(s − t)(m)(y − z)(l)V (l)(β̃ln, α, α; z, s, t)

(s − t)2(γ +m)(y − z)2(α+l−ξ)+βln
ds dz

=
∑
n,l

f ′
ln

∫
(s − t)(m)(s − z)(l)V (l)(β̃ln, α, α; z, y, t)

(s − t)2(γ +m)(s − z)2(α+l−ξ)+βln
ds dz,

f ′
ln = flnπ

ξ �(α′ + βln/2 + l,−α′, ξ − βln/2)

�(α − βln/2, 2ξ − α, βln/2 + l)
.

(31)

Now we do contractions of indices in (31). For compact writing of results we use the shift
operator Tε acting on functions of ε as follows:

Tεf (ε) = f (ε + 1).

Let us denote A = (α1, α2, α3),X = (x1, x2, x3), E = (ε1, ε2, ε3), R = (ρ1, ρ2, ρ3),

S(A;X) ≡ S(α1, α2, α3; x1, x2, x3)

≡
∫

L(α1; x1 − y)L(α2; x2 − y)L(α3; x3 − y) dy, (32)

Sn(A;X) ≡ Sn(α1, α2, α3; x1, x2, x3)

≡
∫

L(n)(α1; x1 − y)λ(n)(y; x2, x3)L(α2; x2 − y)L(α3; x3 − y) dy. (33)

It is shown in the appendix that the result of contraction of tensor indices in the function
Sn(A;X) can be presented as

Sn(A;X) = T (n)(E,R)G(A,E,R)S(A + R;X)|E=R=0, (34)

where

T (n)(E,R) = F (n)(M(E,R),N (E,R)),

M(E,R) = T 2
ε1
Tρ1

[(
Tε2 + Tε3

)(
Tε2Tρ2 + Tε3Tρ3

) − Tε2Tε3Tρ1

]
,

N (E,R) = 1
2Tε1

[(
Tε2 + Tε3

)(
Tρ2 − Tρ3

)
+

(
Tε2 − Tε3

)
Tρ1

]
.

G(A,E,R, ) =
3∏

i=1

�(αnli + ρi, 1 − α′
nli + ρi)

�(αnli + εi, 1 − α′
nli)

,

αnl1 = α +
βnl

2
− ξ, αnl2 = αnl3 = ξ − βnl

2
− l.
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With (34) the problem of integration in (31) is reduced to the case l = 0 and is solved directly
by integration formula (30) (see the appendix). The final result is formulated in the following
way. The crossing symmetry relation (31) is equivalent to the equality∑

nl

f ′
nl�nl(α, βnl; γ,m) = 0 (35)

fulfilling for an arbitrary value of the parameter γ and integer m � 0. The function
�nl(α, βnl; γ,m) can be written in the form

�nl(α, βnl; γ,m) = T (n)(E,R)Q(α, βnl, E,R)�m(α, βnl, γ, R)|E=R=0,

where

Q(α, βnl, E,R) = π2(ξ+1)(−1)ρ1+ρ2�(αnl2 + ρ3, 1 − α′
nl2 + ρ3)

sin(πα′
nl1) sin(πα′

nl2)
∏3

i=1 �(αnli + εi, 1 − α′
nli)

,

�m(α, βnl, γ, R) = �(σ ′
1, σ

′
2, σ

′
3 + m, σ ′

4 + m)

�(σ1 + m, σ2 + m, σ3, σ4)
− �(τ ′

1, τ
′
2, τ

′
3 + m, τ ′

4 + m)

�(τ1 + m, τ2 + m, τ3, τ4)
,

with

σ1 = γ + α +
βnl

2
− ξ + l, σ2 = γ + α − βnl

2
− l + ρ2 + ρ3,

σ3 = 2ξ − α − ρ2 − γ, σ4 = 3ξ + l − 2α − ρ1 − ρ2 − ρ3 − γ,

τ1 = γ, τ2 = α − l + ρ1 + ρ3 + γ − ξ,

τ3 = 3ξ − βnl

2
− α − ρ1 − γ,

τ4 = 2ξ + 2l +
βnl

2
− α − ρ1 − ρ2 − ρ3 − γ.

8. Conclusion

It has been shown that for scalar Euclidean field theories at the critical point λr = λ∗ the
operators Dr

α(λr , Jr , Jγ ) represent the generators of the DTs. The functional Wr(λr, Jr , Jγ )

is invariant with respect to the infinite set of the DTs defined by Dr
α(λr , Jr , Jγ ), including

conformal transformations of the D-dimensional Euclidean space. The Ward identities (24),
(25) are the formal expressions of this invariance.

The Weyl invariance is described by equation (23), where the WT is presented by the
differential operator DW

σ (J, γ ). For a constant σ it generates the usual renormalization
group equation (if one puts in (24) α(x) = xσ ). With arbitrary σ(x) relation (23) could be
regarded as a solution of the problem of local generalization for the renormalization group
equations [14].

For the constructed algebraic structure the Wilson expansion (26) is included as an
additional relation. It was used to derive the sum rule (35) which must be true for arbitrary
λ and integer m. This nontrivial condition enables us to hope that these sum rules contain an
essential information about the dimensions of composite operators and the Wilson coefficients.

We have obtained the following result. There exists an infinite-dimensional algebraic
structure corresponding to each model of the D-dimensional Euclidean scalar QFT. It is
described by the commutation relations (19), (20), Wilson expansion formula (26) and Ward
identities (23)–(25). By choosing the logarithmic dimension D defining dimensions of sources
d̄

log
i , the concrete scalar field theory model is fixed. Additional restrictions follow from the

sum rules (35).
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From the physical point of view, we revealed a hidden infinite-dimensional symmetry
in usual scalar field theory at the critical point. It generates an infinite number of the
Ward identities being an analogue to the infinite number of conservation laws in completely
integrable systems. The critical exponents and Wilson coefficients of the model obey the sum
rules which are written as exact transcendental equations in terms of �-functions. It enables
us to conclude that investigation of the considered infinite-dimensional algebraic structures is
important for the deeper understanding of inherent features of the critical state.

It can also be useful for the practical calculation of the characteristic of the critical
behaviour in concrete models. For example, in the case of ϕ4-theory we have to choose in (13)
the logarithmic dimension D = 4. If we denote ε = (D − 4)/2 and present the right-hand
side of (13) as a power series in ε−1, the coefficients of this series can be interpreted in terms
of renormalization constants for field operators in the minimal subtraction scheme. Then the
algebraic structure of theory, presented by (19), (20), provides infinite number of algebraic
relations for renormalization constants. Together with the sum rules (35) they can be used for
construction of effective calculation methods for critical exponents and Wilson coefficients in
the framework of the ε-expansion.
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Appendix. Details of calculations

We present some technical aspects of calculation methods used in this paper. The basic
formula for our integration over coordinates of the D-dimensional space is∫

L(α; x − z)L(β; z − y) dz = v(α, β, γ )L(γ ′; x − y),

γ = 2ξ − α − β, v(α, β, γ ) = πξ �(α′, β ′, γ ′)
�(α, β, γ )

.

(A.1)

It can be easily proven with the help of Fourier transformation [13]. For derivatives we have

L(n)(α; x) = x(n)

x2(α+n)
= (−1)n�(α)

2n�(α + n)
∂(n)
x

1

x2α

=
(

−Tε∂x

2

)(n)
�(α)

�(α + ε)x2α

∣∣∣∣∣
ε=0

=
(

−Tε∂x

2

)(n)
�(α)

�(α + ε)
L(α; x)

∣∣∣∣∣
ε=0

, (A.2)

(∂2
x )nL(α; x) = (∂2

x )n
1

x2α
= 4n �(α + n, n + 1 − α′)

�(α, 1 − α′)x2(α+n)

= (4Tρ)
n �(α + ρ, ρ + 1 − α′)

�(α, 1 − α′)
L(α + ρ; x)

∣∣∣∣∣
ρ=0

. (A.3)

From (A.1), (A.2) we obtain the generalization of (A.1):∫
L(n)(α; x − z)L(β; z − y) dz = v(n)(α, β, γ )L(n)(γ ′; x − y),

v(n)(α, β, γ ) ≡ πξ �(α′, β ′, γ ′ + n)

�(α + n, β, γ )
.

(A.4)
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For the calculation of the integral over x in (29) we use the inversion operator R acting on
the function of the D-dimensional vectors and defined as

Rx ≡ x

x2
, Rf (x, y, . . . , z) ≡ f (Rx, Ry, . . . , Rz).

The inversion operator has the following properties:

R2 = 1, R
1

x2α
= x2α, R

1

(x − y)2α
= x2αy2α

(x − y)2α
,

Rλ(0; y, z) = y − z, det

(
∂(Rx)

∂x

)
= 1

x2D
.

Therefore, we obtain∫
V (l)(0, x, y;β, α, α) dx = R2

∫
V (l)(0, x, y;β, α, α) dx

= R

∫
(x − y)(l)V (0, Rx,Ry;β, α, α) d(Rx)

= R

∫
(x − y)(l)

x2(d−α)y−2α(x − y)2α−β
dx

= v(l)(α − β/2 − l, 2ξ − α, β/2 + l)y(l)

y2(α−ξ)+β
.

Hence,∫
V (l)(z, x, y;β, α, α, ) dx = v(l)(α − β/2 − l, 2ξ − α, β/2 + l)L(l)

(
α − ξ +

β

2
; y − z

)
.

Thus, after integration over x in (29) one obtains (31).
It follows from the definition of λ(x; y, z)µ and (A.2) that

λ(x; y, z)µ

(x − y)2α(x − z)2β
= Dµ(y, z; ε1, ε2)

�(α, β)

�(α + ε1, β + ε2)(x − y)2α(x − z)2β

∣∣∣∣
ε1=ε2=0

,

and

λ(n)(x; y, z)

(x − y)2α(x − z)2β
= D(n)(y, z; ε1, ε2)

�(α, β)

�(α + ε1, β + ε2)(x − y)2α(x − z)2β

∣∣∣∣
ε1=ε2=0

,

where

Dµ(y, z; ε1, ε2) ≡ 1

2

(
Tε1

∂

∂yµ

− Tε2

∂

∂zµ

)
.

Using (A.2) and notations (32), (33) we obtain the following equality:

Sn(A;X) =
(

−Tε1∂x1

2

)(n)

D(n)(x2, x3; ε2, ε3)G(A,E)S(A;X)|E=0,

G(A,E) = �(α1, α2, α3)

�(α1 + ε1, α2 + ε2, α3 + ε3)
.

The function S(A;X) is invariant with respect to translations, i.e. S(A; x1, x2, x3) =
S(A; x1 + y, x2 + y, x3 + y). Therefore(

∂x1 + ∂x2 + ∂x3

)
S(A;X) = 0, ∂xi

∂xj
S(A;X) = 1

2

(
∂2
xk

− ∂2
xi

− ∂2
xj

)
S(A;X),
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where i, j, k = 1, 2, 3 and i �= j, i �= k, j �= k. By means of (A.3), we obtain(
Tε1∂x1

2

)2k

D2k(x2, x3; ε2, ε3)G(A,E)S(A;X)|E=0

= 1

42k
T 2k

ε1
∂2k
x1

(
T 2

ε2
∂2
x2

+ T 2
ε3
∂2
x3

− 2Tε2Tε3∂x2∂x3

)k
G(A,E)S(A;X)|E=0

= M(E,R)kG(A,E,R)S(A + R;X)|E=0,R=0,

where R = (ρ1, ρ2, ρ2),

M(E,R) = T 2
ε1
Tρ1

[(
Tε2 + Tε3

)(
Tε2Tρ2 + Tε3Tρ3

) − Tε2Tε3Tρ1

]
,

G(A,E,R, ) =
3∏

i=1

�(αi + ρi, 1 − α′
i + ρi)

�(αi + εi, 1 − α′
i )

.

Analogously we obtain the relation(
−Tε1∂x1

2
D(x2, x3; ε2, ε3)

)l

G(A,E)S(A;X)|E=0

= 1

4l
T l

ε1

(
Tε3∂x1∂x3 − Tε2∂x1∂x2

)l
G(A,E)S(A;X)|E=0

= N (E,R)lG(A,E,R)S(A + R;X)|E=0,R=0,

where

N (E,R) = 1
2Tε1

[(
Tε2 + Tε3

)(
Tρ2 − Tρ3

)
+

(
Tε2 − Tε3

)
Tρ1

]
.

Thus, we have shown that the result of contraction of tensor indices in the function
Sn(A;X) can be presented as

Sn(A;X) = T (n)(E,R)G(A,E,R)S(A + R;X)|E=R=0,

where

T (n)(E,R) = F (n)(M(E,R),N (E,R)).

We can write the crossing symmetry equation (31) as∑
n,l

f ′
nl

∫
Sn(αnl1, αnl2, αnl3; y, s, t)L(m)(ζnl + γ ; s − t) ds

=
∑
n,l

f ′
nl

∫
Sn(αnl1, αnl2, αnl3; s, y, t)L(m)(γ ; s − t)L(ζnl; y − t) ds,

with

αnl1 = βnl

2
− α′, αnl2 = αnl3 = β̃nl

2
, ζnl = α − β̃nl

2
.

By means of (A.4) we obtain∫
S(α1, α2, α3; y, s, t)L(m)(ζ + γ ; s − t) ds

= 	1(α1, α2, α3, ζ, γ,m)L(m)(α1 + α2 + α3 + ζ + γ − 2ξ ; t − y),∫
S(α1, α2, α3; s, y, t)L(m)(γ ; s − t)L(ζ ; s − y) ds

= 	2(α1, α2, α3, ζ, γ,m)L(m)(α1 + α2 + α3 + ζ + γ − 2ξ ; t − y),
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where

	1(α1, α2, α3, ζ, γ,m) = vm(γ + ζ, α2, 2ξ − α2 − γ − ζ )

× vm(γ + ζ + α2 + α3 − ξ, α1, 3ξ − α1 − α2 − α3 − γ − ζ ),

	2(α1, α2, α3, ζ, γ,m) = vm(γ, α1, 2ξ − α1 − γ )

× vm(α1 + α2 + γ − ξ, α3, 3ξ − α1 − α2 − α3 − γ ).

Let us denote

	(A, ζ, γ,m) = 	(α1, α2, α3, ζ, γ,m) ≡ 	1(A, ζ, γ,m) − 	2(A, ζ, γ,m),

�nl(α, βnl; γ,m) = T (n)(E,R)G(Anl, E,R)	(Anl + R, γ, ζnl)|E=R=0,

where Anl ≡ (αnl1, αnl2, αnl3). Equation (31) reads∑
nl

f ′
nl�nl(α, βnl; γ,m) = 0.

It is fulfilled for an arbitrary value of the parameter γ and integer m � 0. Using notations
Ē ≡ (ε1, ε3, ε2), R̄ ≡ (ρ1, ρ3, ρ2),

Am(ν1, ν2; ν3, ν4) ≡ �(ν ′
1, ν

′
2, ν

′
3 + m, ν ′

4 + m)

�(ν1 + m, ν2 + m, ν3, ν4)
,

we write

	1(Anl + R, γ,m) = π2ξ

2∏
i=1

�(α′
nli − ρi, )

�(αnli + ρi)
Am(σnl1, σnl2; σnl3, σnl4),

σnl1 = γ + α +
βnl

2
− ξ + l, σnl2 = γ + α − βnl

2
− l + ρ2 + ρ3,

σnl3 = 2ξ − α − ρ2 − γ, σnl4 = 3ξ + l − 2α − ρ1 − ρ2 − ρ3 − γ,

	2(Anl + R̄, γ,m) = π2ξ

2∏
i=1

�(α′
nli − ρi, )

�(αnli + ρi)
Am(τnl1, τnl2; τnl3, τnl4),

τnl1 = γ, τnl2 = α − l + ρ1 + ρ3 + γ − ξ,

τnl3 = 3ξ − βnl

2
− α − ρ1 − γ,

τnl4 = 2ξ + 2l +
βnl

2
− α − ρ1 − ρ2 − ρ3 − γ.

Taking into account that �(1 − x, x) = π/ sin(πx), we obtain

G(A,E,R, )

2∏
i=1

�(α′
nli − ρi, )

�(αnli + ρi)

=
2∏

i=1

�(αnli + ρi, 1 − α′
nli + ρi, α

′
nli − ρi)

�(αnli + εi, 1 − α′
nli , αnli + ρi)

�(αnl2 + ρ3, 1 − α′
nl2 + ρ3)

�(αnl2 + ε3, 1 − α′
nl2)

= π2 �(αnl2 + ρ3, 1 − α′
nl2 + ρ3)

sin(π(α′
nl1 − ρ1)) sin(π(α′

nl2 − ρ2))

3∏
i=1

1

�(αnli + εi, 1 − α′
nli)

.

For integer m, and for even n

sin(α + πm) = (−1)m sin(α),

T (n)(E,R)G(Anl, E,R)	2(Anl + R, γ, ζnl)|E=R=0

= T (n)(E,R)G(Anl, Ē, R̄)	2(Anl + R̄, γ, ζnl)|E=R=0

= T (n)(E,R)G(Anl, E,R)	2(Anl + R̄, γ, ζnl)|E=R=0.
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Therefore we can present the function �nl(α, βnl; γ,m) as follows:

�nl(α, βnl; γ,m) = T (n)(E,R)Q(α, βnl, E,R)�m(α, βnl, γ, R)|E=R=0,

where

Q(α, βnl, E,R) = π2(ξ+1)(−1)ρ1+ρ2�(αnl2 + ρ3, 1 − α′
nl2 + ρ3)

sin(πα′
nl1) sin(πα′

nl2)
∏3

i=1 �(αnli + εi, 1 − α′
nli)

,

�m(α, βnl, γ, R) = Am(σnl1, σnl2; σnl3, σnl4) − Am(τnl1, τnl2; τnl3, τnl4).
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